260 research outputs found

    A poxviral homolog of the Pellino protein inhibits Toll and Toll-like receptor signalling

    Get PDF
    Toll-like receptor (TLR) signalling pathways constitute an evolutionarily conserved component of the host immune response to pathogenic infection. Here, we describe the ability of a virally encoded form of the Pellino protein to inhibit Toll- and TLR-mediated activation of downstream Rel family transcription factors. In addition to inhibiting drosomycin promoter activation by Spa¨ tzle in Drosophila melanogaster cells, viral Pellino attenuates the activation of NF-jB by TLR signalling components and by the TLR4 ligand, LPS, in human cells. We propose that viral Pellino, like mammalian Pellinos, contains a forkhead-associated domain but differs from the mammalian forms in that it lacks a complete and functional RING-like domain. We produce a homology model and present experimental data to support this model by demonstrating that, like mammalian Pellinos, viral Pellino can interact with IRAK-1 via its forkhead-associated domain, whereas unlike its mammalian counterparts, it fails to post-translationally modify IRAK-1. Furthermore, we demonstrate that viral Pellino can functionally antagonise the activity of human Pellino3S. Thus, our findings identify potential immunoevasive capabilities possessed by a poxviral homolog of the Pellino protein and add growing evidence for a likely role for Pellino proteins in Toll and TLR signalling

    Illustrating potential efficiency gains from using cost-effectiveness evidence to reallocate Medicare expenditures

    Get PDF
    This article is available open access through the publisher’s website at the linke below. Copyright @ 2013, International Society for Pharmacoeconomics and Outcomes Research (ISPOR).This article has been made available through the Brunel Open Access Publishing Fund.Objectives - The Centers for Medicare & Medicaid Services does not explicitly use cost-effectiveness information in national coverage determinations. The objective of this study was to illustrate potential efficiency gains from reallocating Medicare expenditures by using cost-effectiveness information, and the consequences for health gains among Medicare beneficiaries. Methods - We included national coverage determinations from 1999 through 2007. Estimates of cost-effectiveness were identified through a literature review. For coverage decisions with an associated cost-effectiveness estimate, we estimated utilization and size of the “unserved” eligible population by using a Medicare claims database (2007) and diagnostic and reimbursement codes. Technology costs originated from the cost-effectiveness literature or were estimated by using reimbursement codes. We illustrated potential aggregate health gains from increasing utilization of dominant interventions (i.e., cost saving and health increasing) and from reallocating expenditures by decreasing investment in cost-ineffective interventions and increasing investment in relatively cost-effective interventions. Results - Complete information was available for 36 interventions. Increasing investment in dominant interventions alone led to an increase of 270,000 quality-adjusted life-years (QALYs) and savings of $12.9 billion. Reallocation of a broader array of interventions yielded an additional 1.8 million QALYs, approximately 0.17 QALYs per affected Medicare beneficiary. Compared with the distribution of resources prior to reallocation, following reallocation a greater proportion was directed to oncology, diagnostic imaging/tests, and the most prevalent diseases. A smaller proportion of resources went to cardiology, treatments (including drugs, surgeries, and medical devices, as opposed to nontreatments such as preventive services), and the least prevalent diseases. Conclusions - Using cost-effectiveness information has the potential to increase the aggregate health of Medicare beneficiaries while maintaining existing spending levels.The Commonwealth Fun

    Deconvolution of Images from BLAST 2005: Insight into the K3-50 and IC 5146 Star-Forming Regions

    Full text link
    We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). We have analyzed its performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available highresolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4.'5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the Spectral Energy Distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21-cm radio continuum and 12CO molecular line emission. The restored extended large scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below ~ 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power Young Stellar Objects (YSOs). Further evidence for starless clumps has also been found in the IC 5146 region.Comment: 13 pages, 12 Figures, 3 Table

    Discovery and Follow-up Observations of the Young Type Ia Supernova 2016coj

    Get PDF
    The Type~Ia supernova (SN~Ia) 2016coj in NGC 4125 (redshift z=0.004523z=0.004523) was discovered by the Lick Observatory Supernova Search 4.9 days after the fitted first-light time (FFLT; 11.1 days before BB-band maximum). Our first detection (pre-discovery) is merely 0.6±0.50.6\pm0.5 day after the FFLT, making SN 2016coj one of the earliest known detections of a SN Ia. A spectrum was taken only 3.7 hr after discovery (5.0 days after the FFLT) and classified as a normal SN Ia. We performed high-quality photometry, low- and high-resolution spectroscopy, and spectropolarimetry, finding that SN 2016coj is a spectroscopically normal SN Ia, but with a high velocity of \ion{Si}{2} λ\lambda6355 (12,600\sim 12,600\,\kms\ around peak brightness). The \ion{Si}{2} λ\lambda6355 velocity evolution can be well fit by a broken-power-law function for up to a month after the FFLT. SN 2016coj has a normal peak luminosity (MB18.9±0.2M_B \approx -18.9 \pm 0.2 mag), and it reaches a BB-band maximum \about16.0~d after the FFLT. We estimate there to be low host-galaxy extinction based on the absence of Na~I~D absorption lines in our low- and high-resolution spectra. The spectropolarimetric data exhibit weak polarization in the continuum, but the \ion{Si}{2} line polarization is quite strong (0.9%±0.1%\sim 0.9\% \pm 0.1\%) at peak brightness.Comment: Submitte

    Marsbee - Swarm of Flapping Wing Flyers for Enhanced Mars Exploration

    Get PDF
    Mars exploration has received significant interest from academia, industry, government, and the general public. Despite continued interest, flying on Mars remains challenging, mainly due to the ultra-thin Martian atmospheric density. Although the gravitational acceleration on Mars is 38 percent of Earth's 9.8 meters per second squared, the Martian atmospheric density is only 1.3 percent of the air density on Earth. The aerodynamic forces are proportional to the ambient fluid density. Therefore, flying near the surface of Mars has been considered nearly impossible. The proposed mission architecture (Fig. 1) consists of a Mars rover (already existing) that serves as a mobile base for Marsbees - a deployable swarm of small bio-inspired flapping wing vehicles. In one ConOps scenario, each Marsbee would carry an integrated stereographic video camera and the swarm could construct a 3D topographic map of the local surface for rover path planning. These flying scouts would provide a "third-dimension" to the rover capabilities. In other scenarios, each part of the swarm of Marsbees could carry pressure and temperature sensors for atmospheric sampling, or small spectral analyzers for identification of mineral outcroppings. In each scenario, the rover acts as a recharging and deployment/return station and data and communication hub. Human exploration of Mars is one of the major objectives of NASA and commercial entities such as SpaceX and Boeing. The identified innovations unique to the bio-inspired flapping Marsbee provide viable multi-mode flying mobility for Martian atmospheric and terrain exploration. A swarm of Marsbees provides an enhanced reconfigurable Mars exploration system that is resilient to individual component failures. These Marsbees can carry sensors and wireless communication devices in combination with a Mars rover and helicopters. These enhanced sensing and information gathering abilities can contribute to the following NASA Mars mission objectives: i) "Determine the habitability of an environment", ii) "Obtain surface weather measurements to validate global atmospheric models", and iii) "Prepare for human exploration on Mars." Various commercial entities, e.g. SpaceX and Boeing, are investing in technologies to transport humans to Mars

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed
    corecore